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Today’s schedule

Part 1: EFA basics
* Introduction to factor analysis
* Logic behind EFA

e Key steps of EFA
e EFAvs. CFA

(BREAK)

Part 2: EFA Exercise



What is factor analysis?

* A multivariate statistical technique developed in the early
1900s

* A method to examine relationships between observed
variables (#1812 %) and latent factors GEZEEF)



Types of factor analysis

* Exploratory factor analysis (EFA; £ HIEF 55 #7)
— Data-driven approach
— Often used in early stages of an investigation

« Confirmatory factor analysis (CFA; #&sERI/FER IR F 5 47)
— Theory-driven approach

— Often used in later stages of an investigation to confirm
specific hypotheses

e Combining EFA and CFA



Previous applications of EFA
in applied linguistics (1)

Development and validation of survey and assessment
instruments

Example 1: Bachman, Davidson, Ryan, & Choi (1995)

Examining comparability of the factor structures of two
English language tests (Cambridge FCE and TOEFL)

EFAs for each test separately, followed by another EFA run for
a combined analysis of the two tests



Previous applications of EFA
in applied linguistics (2)

* Development and validation of survey and assessment
instruments

Example 2: Vandergrift, Goh, Mareschal, & Tafagodtari (2006)

* Developing and validating a new survey on L2 learners’
metacognitive awareness and strategy use in listening
comprehension

* Aninitial EFA to finalize survey content, followed by a CFA on
a different sample



Previous applications of EFA
in applied linguistics (3)

* Descriptive use of EFA

Example: Biber, Conrad, Reppen, Byrd, & Helt (2002)

* An EFA of an academic English language corpus to identify
linguistic characteristics of various spoken and written
registers



Logic behind factor analysis

e Both EFA and CFA based on the common factor model (38 A
FETIL)

Underlying logic: Variables correlate because they tap into the
same construct(s) to certain degrees

Goal: To identify an optimal number of latent factors (factor
solution) that describes the pattern of relationships among a
set of variables sufficiently well (reproduction of the observed
correlation matrix )



The common factor model

 Decomposing variance of observed variables into two parts:

— Common variance: part of variance influenced by a latent
factor shared across different variables (common factors;
HEERF)

— Unique variance: part of variance not explained by the
common factors

* Variance explained by factors other than the common
factors (unique factors; 1 B &EF)

* Variance due to measurement error



EFA: Issues

Readily available in statistical packages

Easy to implement, but careful consideration of various issues
in different steps of the analysis is required to obtain
interpretable and meaningful analysis results



Key steps of EFA

Step 1: Checking appropriateness of study design and
data type for conducting EFA

Step 2: Deciding on the number of factors to extract
Step 3: Extracting and rotating factors
Step 4: Interpreting key EFA results



A sample scenario

An EFL speaking and listening test
Sample size: N=200

Variables 1-6 for speaking, and Variables 7-12 for listening
(4-6 score points available for each variable)

Expected findings

— There are two latent factors: One each for speaking and
listening

— The two factors are correlated with each other because
they are both different aspects of L2 language ability

Software: SPSS (PASW Statistics Version 18)



Step 1: Checking appropriateness of study
design and data type for EFA (1)

Data type: determines the type of correlation matrix to be
analyzed

Common examples
* Interval or quasi-interval scales = Pearson correlation matrix
* Ordered categorical data

— Dichotomous data = tetrachoric correlation matrix

— Polytomous data = polychoric correlation matrix



Step 1: Checking appropriateness of study
design and data type for EFA (2)

Number of variables: At least 3 variables needed per factor

Example 1: 3 variables to identify one factor

Number of data points available in a correlation matrix with k=3:

k(k+1)/2 =3(3+1)/2 =6

Variable 1

4

0 Variable 2

4

Variable 3

4

Just identified model



Step 1: Checking appropriateness of study
design and data type for EFA (3)

Number of variables: At least 3 variables needed per factor

Example 2: 4 variables to identify one factor

Number of data points available in a correlation matrix with k=4 :

k(k+1)/2 = 4(5+1)/2 = 10

Variable 1

4

e Variable 2

Variable 3

Variable 4

Over identified model



Step 1: Checking appropriateness of study
design and data type for EFA (4)

Number of variables: At least 3 variables needed per factor

Example 2: 4 variables to identify one factor
Number of data points available in a correlation matrix with k=2 :

k(k+1)/2 = 2(3+1)/2 =3
Variable 1 |/
Variable 2

Under identified model




Step 1: Checking appropriateness of study
design and data type for EFA (5)

Sample size: Suggestions about sample size in the literature vary

A required sample size depends on many factors such as:

» Strength of correlations between factors and their indicator
variables

e Reliability
e Score distribution of variables (e.g., normality)
 Number of factors to extract

SEE: Fabriger et al. (1999), Floyd & Widaman (1995), Tabachnick
& Fidell (2007)



Step 2: Deciding on the number of
factors to extract(1)

Various approaches to determining the number of factors
* Approaches based on eigenvalues for the correlation matrix

Eigenvalue (B A {&) : Shows how much of the variance of a set
of variables can be explained by a factor

« Goodness of model fit (ETILDBEEE) : goodness-of-fit
statistics available for certain estimation methods (e.g., ML)



Step 2: Deciding on the number of
factors to extract(2)

Approaches based on eigenvalues for the correlation matrix

Goal: To identify the number of factors with large enough
eigenvalues to explain relationships among observed variables

Kaiser’s criterion (Kaiser, 1960)
Scree test (Cattell, 1966)
Parallel analysis (PA; Horn, 1965)



Step 2: Deciding on the number of
factors to extract(3)

Kaiser’s criterion (Kaiser, 1960)
— The number of factors to extract = the number of factors

with eigenvalues exceeding 1.0
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Step 2: Deciding on the number of
factors to extract(4)

Scree plot (Cattell, 1966)
— The number of factors to extract = the “elbow” in the graph

Scree plot

£

5—

Eigenvalue
Ll

Factor number 21



Step 2: Deciding on the number of
factors to extract(5)

* Parallel analysis (PA; Horn, 1965)

— Comparison of eigenvalues obtained from real data against
those obtained from multiple samples of random numbers
(see Hayton,et al., 2004; Liu& Rijmen, 2008 for sample SPSS
and SAS programs)

Steps:
1. Obtain a scree plot for the actual data being analyzed

2. Run a program for PA, which calculates eigenvalues for
multiple samples of random numbers; then take the mean
of eigenvalues for each component across the PA runs

3. Plot the mean eigenvalues for individual components from
the PA over the scree plot for comparing the eigenvalues
from the actual data and those from the PA runs



Step 2: Deciding on the number of
factors to extract(6)

e Goodness-of-fit statistics

— Available for certain estimation methods of model
parameter estimation

Example: maximum likelihood (ML; &4 %)



Step 2: Deciding on the number of
factors to extract(7)

Example: maximum likelihood (ML; &1 i%)
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Speaks 714 -.344 44,8449 43 807
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Listen 607 288

Listenz 60 283

Listen3 451 253

Listend 645 308

Listens 507 367

Listens 508 408
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Step 2: Deciding on the number of
factors to extract(8)

* |ssues of consideration

— Some widely used methods are easy to implement (e.g.,
Kaiser’s criterion, scree test)

— However, different methods have different disadvantages

» Kaiser’s criterion: Often found to produce misleading
results

* Scree plots: Can be difficult to decide where the
“elbow” is

* ML estimation: Data have to satisfy distributional
assumptions (deviation from normality = misleading
analysis results)



Step 2: Deciding on the number of
factors to extract(9)

e Issues of consideration (continued)

— What matrix should be analyzed when determining the
number of factors? (Brown, 2006; Fabriger et al., 1999)

e Kaiser’s criterion: observed correlation matrix required

* Scree test: possible both on observed and reduced
correlation matrices

* What should we do in practice?
— Use multiple methods

— In later steps of the analysis, carefully examine substantive
interpretability and parsimony of a given factor solution



Step 3: Extracting and rotating factors(1)

Choice of a factor extraction method depends on multiple
factors such as data type, distribution, and information you
need

Common methods used with continuous variables:

Method Distributional Goodness-of-fit
assumption statistics
Principal factor No assumption Not available
analysis imposed
Maximum likelihood | Normality assumed Available
(ML)




Step 3: Extracting and rotating factors(2)

* Principal component analysis (PCA; F k773 #7)

— NOT based on the common factor model; NOT consistent
with the purpose of examining underlying factor structure

— A mathematical data reduction method; NOT based on the
common factor model

— More appropriate when, for example, the goal is to create
a composite variable out of a larger number of factors



Step 3: Extracting and rotating factors(3)

Factor rotation

 One factor solution: Results from the initial factor solution
can be interpreted
e A solution with multiple factors: Results from the initial

factor solution is difficult to interpret = Factor rotation (a
mathematical transformation) is often conducted

— Orthogonal rotation (IE{T[EEz) : Correlations among factors
NOT allowed (e.g., Varimax rotation)

— Oblique rotation (#3[El%z) : Correlations among factors
allowed (e.g., Oblimin rotation; Promax rotation)



Step 4: Extracting and rotating factors(4)
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Step 4: Extracting and rotating factors(5)

Before rotation
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Step 4: Extracting and rotating factors(6)
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Step 4: Extracting and rotating factors(7)

Listening

After rotation
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Step 3: Extracting and rotating factors(8)

Issues of consideration

* With language data, which type of factor rotation (orthogonal
vs. oblique) is generally preferred?

» Should factors be correlated to use an oblique rotation?



Step 4: Interpreting key analysis results(1)

Key analysis results to focus on:

— Communality (3£&14): The estimated proportion of the
variance of a given variable explained by the factors
included in the model

— Factor loading (AF &% &) : A standardized estimate of
the strength of the relationship between an observed
variable and a latent factor (similar to a standardized
regression coefficient)

— Factor correlation (EFRI+4HE8) : A “true” correlation
between a pair of factors; adjusted for measurement error



Step 4: Interpreting key analysis results(2)

Communality (3tiE{E)

3 NES
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interpreted in a meaningful Speaks 408 853
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Listend 456 517
Listens 421 493
Listen® 445 510
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Step 4: Interpreting key analysis results(3)

Calculating communality

Example: When the inter-factor correlation (¢,,) = .66, the
communality of Speaking 3 can be calculated as:

Communality = A; 2+ A2 + 205, §,,A,,
= (.70)?+ (.08)?+ 2(.70)(.66)(.08)
=.490 +.0064 +.074 = .570

(For details about calculating communality, see Brown, 2006, pp.
90-91)



Step 4: Interpreting key analysis results(4)
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EFA vs. CFA (1)

Differences in approaches

* Exploratory factor analysis (EFA; & IR F 5 #7)
— Data-driven approach
— Often used in early stages of an investigation

« Confirmatory factor analysis (CFA; #&sERI/FERRIEF 5 47)
— Theory-driven approach

— Often used in later stages of an investigation to confirm
specific hypotheses



EFA vs. CFA (2)

Graphic representation of the differences (per Brown, 2006)

Variable 1

Variable 2

Variable 3

Variable 4

|/ EFA

Variable 5

l/ (oblique rotation)

Variable 6




EFA vs. CFA (3)

Graphic representation of the differences (per Brown, 2006)

Variable 1

Factor 1 Variable 2

Variable 3

Variable 4 CEA

Variable 5
Factor 2

NN N\

Variable 6




EFA vs. CFA (4)

Issues of consideration about using EFA and CFA (Joreskog,

2007)

Stages of research: exploratory vs. confirmatory phases

Nature of investigation: “Factor analysis need not be strictly
exploratory or strictly confirmatory. Most studies are to some
extent both exploratory and confirmatory because they involve
some variables of known and other variables of unknown
composition.” (Joreskog, 2007, p. 58)

Cross-validation of results from exploratory studies by
conducting confirmatory analyses on different data sets

(e.g., using randomly-split samples)



Useful guidelines for conducting EFA

* Factor analysis is often criticized not because of the
fundamental weakness of the methodology but because of
its misuses in previous factor analysis applications

* Further reading:
— Brown (2006)
— Fabriger et al. (1999)
— Floyd & Widaman (1995)
— Preacher & MacCallum (2003)
— Tabachnick & Fidell (2007)
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Questions?

E-mail me at: ysawaki@waseda.jp



