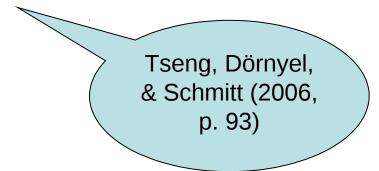

An introduction to structural equation modeling for vocabulary research


Yo In'nami Toyohashi University of Technology innami@las.tut.ac.jp www7b.biglobe.ne.jp/~koizumi/Innami/top-english.html

Overview


- <u>SEM basics</u>
- SEM demo
- Applications

- Structural equation modeling (SEM)
 - Also called covariance structure analysis or simultaneous equation modeling
 - A statistical technique for examining the nature of the relationships among observed and latent variables that applies a confirmatory, hypothesis-testing approach to the data (e.g., Byrne, 2006)
 - Regression + factor analysis
 - Encompasses ANOVA, ANCOVA, CFA, regression...
 - Suitable for visually presenting study findings

- Four advantages of SEM (Byrne, 2006)
 - SEM takes a <u>confirmatory, hypothesis-testing approach</u> to the data, in contrast to traditional analysis, such as exploratory factor analysis, where analysis is data driven.
 - SEM is designed to <u>correct for measurement errors</u> of variables. The results allow a researcher to interpret the relationship among variables, separating the measurement errors.
 - SEM can <u>analyze both unobserved (i.e., latent) and observed</u> <u>variables</u>. This contrasts with path analysis that enables researchers to model only observed variables. Latent variables are used to define factors or constructs.
 - Multivariate relations or indirect effects can be analyzed using SEM, whereas no other statistical methods can easily do this. Investigation into multivariate relations may include models where correlations are hypothesized only among a certain set of variables. Investigating indirect effects may include determining whether an independent variable directly affects a dependent variable or whether it does so through a mediating variable. Path analysis can be used to model these multivariate relations or indirect effects with observed variables, but it cannot be used to conduct analyses using unobserved variables.

- Five steps involved in an SEM application (Bollen & Long, 1993)
 - Model specification
 - Model identification
 - Parameter estimation
 - E.g., Maximum likelihood
 - Model fit
 - E.g., CFI
 - Model respecification

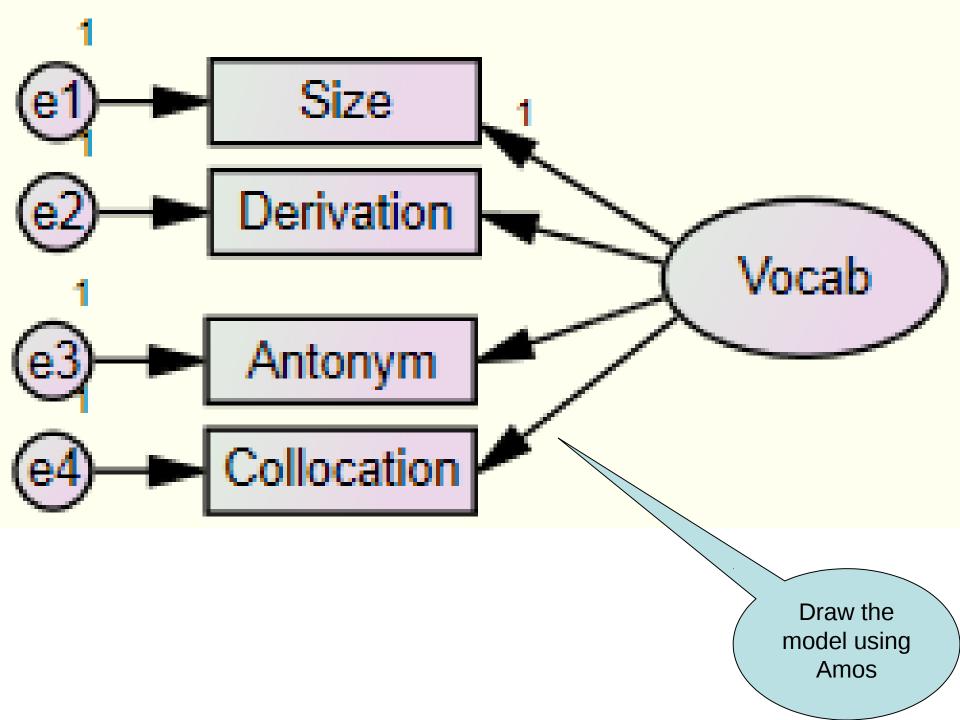
- Requirements:
 - Sample size: 100-200+
 - Normality
 - Univariate skewness & kurtosis
 - Multivariate kurtosis
 - Missing data

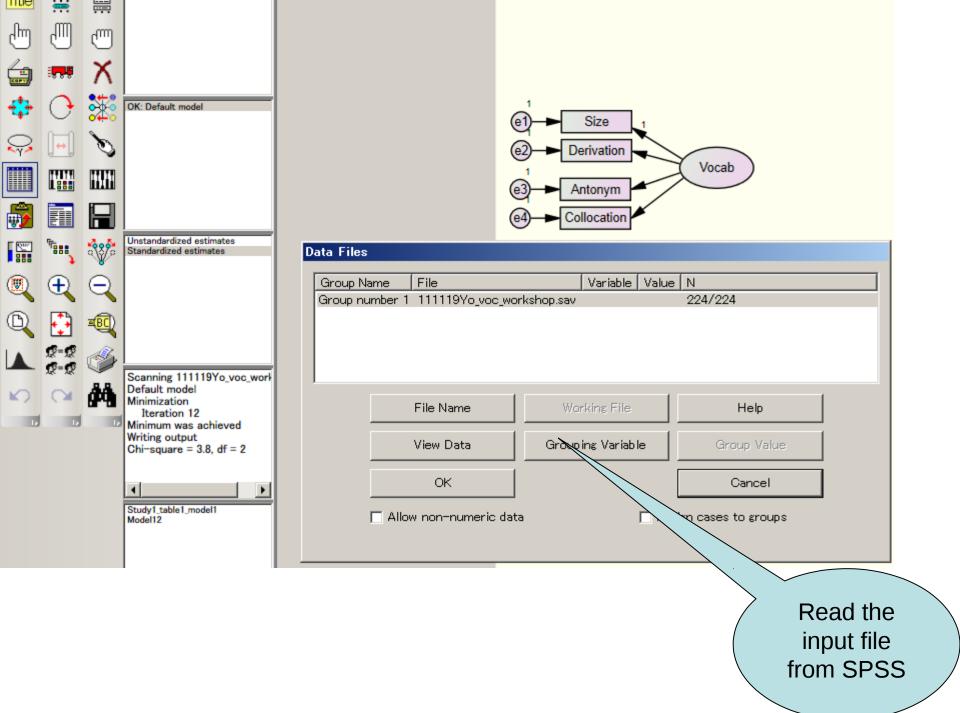
Overview

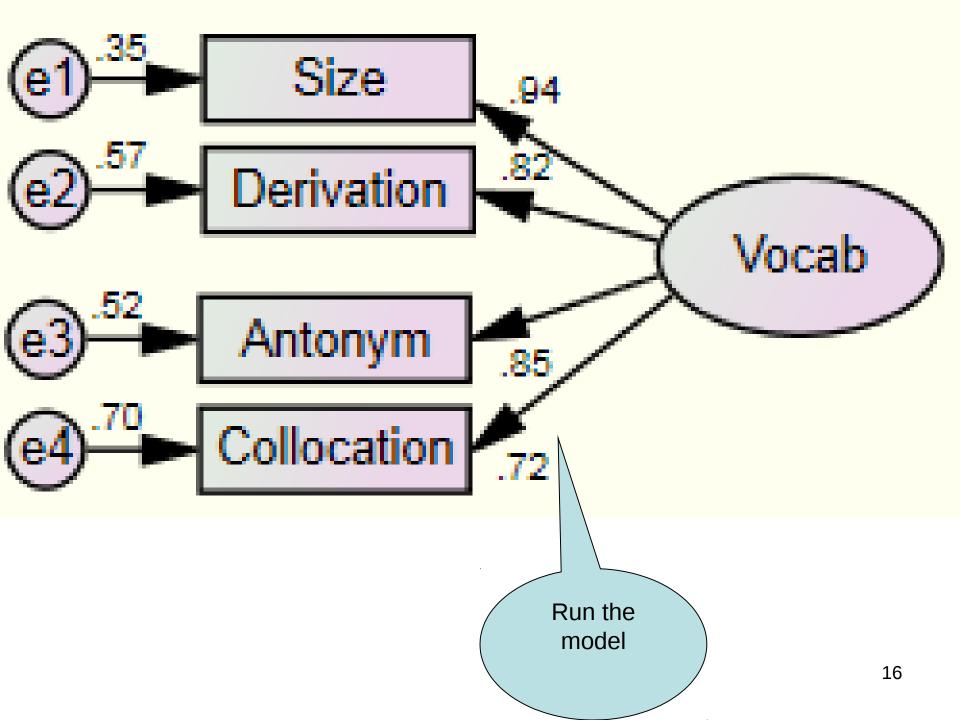
- SEM basics
- <u>SEM demo</u>
- Applications

SEM demo

- Koizumi & In'nami (in preparation)
 - Examining the uni-factor structure of vocabulary knowledge
 - SPSS & Amos
 - Sample size: 100-200+ (224)
 - Normality
 - Univariate skewness & kurtosis (OK)
 - Multivariate kurtosis (OK)
 - Missing data (No missing data)


🚹 111119Yo	_voc_work	shop.sav	[データセット	1] - PASV	V Statisti	ics データエ	ティタ	
ファイル(E)	編集(<u>E</u>)	表示(<u>∨</u>)	データ(<u>D</u>)	変換(T)	分析 <mark>(A)</mark>	グラフ <mark>(G</mark>)	ユーティリティ(U)	ウィンドウ <u>(W)</u>
				¥ 📱	1		h 👫 🔛	


12.00


1:size1

	size1	size2	size3	size	derivation	antonym	collocation
1	12.00	7.00	2.00	21.00	4.00	5.00	8.00
2	7.00	.0	1.00	8.00	3.00	2.00	8.00
3	10.00	5.00	1.00	16.00	4.00	4.00	4.00
4	8.00	3.00	3.00	14.00	6.00	2.00	10.00
5	8.00	2.00	1.00	11.00	2.00	4.00	6.00
6	21.00	16.00	3.00	40.00	10.00	8.00	11.00
7	19.00	9.00	2.00	30.00	8.00	10.00	7.00
8	23.00	18.00	11.00	52.00	13.00	13.00	11.00
9	8.00	2.00	1.00	11.00	2.00	2.00	6.00
10	21.00	11.00	4.00	36.00	9.00	7.00	13.00
11	13.00	9.00	2.00	24.00	6.00	9.00	11.00
12	20.00	15.00	8.00	43.00	10.00	8.00	14.00
13	22.00	15.00	7.00	44.00	10.00	9.00	12.00
14	15.00	7.00	2.00	24.00	6.00	7.00	6.00
15	6.00	5.00	1.00	12.00	2.00	3.00	5.00
16	19.00	10.00	3.00	32.00	12.00	6.00	×1.00
17	18.00	10.00	2.00	30.00	10.00	8.00	
18	18.00	11.00	2.00	31.00	8.00	8.00	13.00
19	16.00	13.00	2.00	31.00	9.00	8.00	7.00
20	10.00	5.00	2.00	17.00	3.00	4.00	11.00
20	10.00	5.00	2.00	17.00	5.00	4.00	

Create the input data file in SPSS/Excel

Assessment of normality (Group number 1)

Variable	min	max	skew	c.r.	kurtosis	c.r.
antonym	.000	14.000	.143	.871	486	-1.484
collocation	2.000	18.000	353	-2.159	.533	1.627
size	8.000	54.000	.219	1.337	535	-1.636
derivation	.000	19.000	.066	.401	531	-1.622
Multivariate					372	402

Univariate normality: (1) Skewness & kurtosisis, c.r. (critical ratio) $\leq \pm 1.96$ (or 3.29). (2) Better to examine the histogram and the skewness & kurtosis statistics rather than to calculate their significance (N \geq 200; Field, 2005, p. 72).

Multivariate normality: (1) c.r. (critical ratio) $\leq \pm 1.96$ (or 3.29), (2) c.r. values > 5.00 indicate nonnormal distribution (Bentler, 2005, p. 106; Byrne, 2010, p. 104).

17

p2 Observation number Mahalanobis d-squared p1 30 .008 13.715 .844 20113.313 .010 .648 57 12.381 .015 .642 168 12.123 .016 .504 158 11.760 .019 .431 209 11.252 .024 .445 11.057 .026 .363 10.958 .027 .262 160 9.728 .045 .688 133 9.603 .048 .628 34 9.599 .048 .506 172 9.554 .049 .408 198 9.486 .050 .332

Observations farthest from the centroid (Mahalanobis distance) (Group number 1)

Multivariate normality: Mahalanobis distance less than 13.816 (for $df = 2, p < .001, \chi^2 =$ 13.816) Models

Default model (Default model)

1 or above, good; if negative, the model can't be tested. Notes for Model (Default model)

Computation of degrees of freedom (Default model)

Number of distinct sample moments: 10

s of distinct parameters to be estimated:

receives of freedom (10 - 8)

8

Result (Default model)

Minimum was achieved Chi-square = 3.846Degrees of freedom = 2Probability level = .146

Regression Weights: (Group number 1 - Default model)

			Estimate	S.E.	C.R.	P	Label
derivation	<	e2	2.074	.121	17.147	***	
size	<	e1	3.595	.408	8.812	***	
collocation	<	Vocab	.214	.016	13.337	***	
collocation	<	e4	1.974	.103	19.251	***	
antonym	<	Vocab	.261	.014	18.217	***	
antonym	<	e3	1.521	.096	15.890	***	
size	<	Vocab	1.000			\ <i>\</i>	
derivation	<	Vocab	.316	.019	17.047	***	

1

All paths are statistically significant.

Standardized Regression Weights: (Group number 1 - Default model)

			Estimate
derivation	<	e2	.567
size	<	el	.353
collocation	<	Vocab	.719
collocation	<	e4	.695
antonym	<	Vocab	.853
antonym	<	e3	.522
size	<	Vocab	.936
derivation	<	Vocab	.824

Model Fit Summary

CMIN

Model	NPAR	CMIN	DF	Р	CMIN/DF
Default model	8	3.846	2	.146	1.923
Saturated model	10	.000	0		
Independence model	4	586.794	6	.000	97.799

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	.193	.992	.958	.198
Saturated model	.000	1.000		
Independence model	13.709	.407	.011	.244

Baseline Comparisons

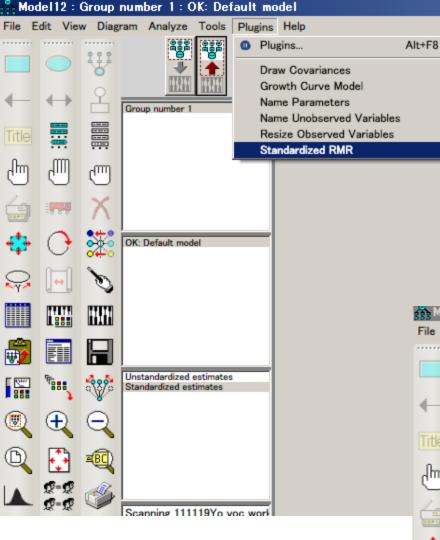
Model	NFI Delta1	RFI rho1	IFI Delta2	TLI rho2	CFI
Default model	.993	.980	.997	.990	.997
Saturated model	1.000		1.000		1.000
Independence model	.000	.000	.000	.000	.000

Parsimony-Adjusted Measures

Model	PRATIO	PNFI	PCFI
Default model	.333	.331	.332
Saturated model	.000	.000	.000
Independence model	1.000	.000	.000

NCP

Model	NCP	LO 90	HI 90
Default model	1.846	.000	11.625
Saturated model	.000	.000	.000
Independence model	580.794	504.966	664.020

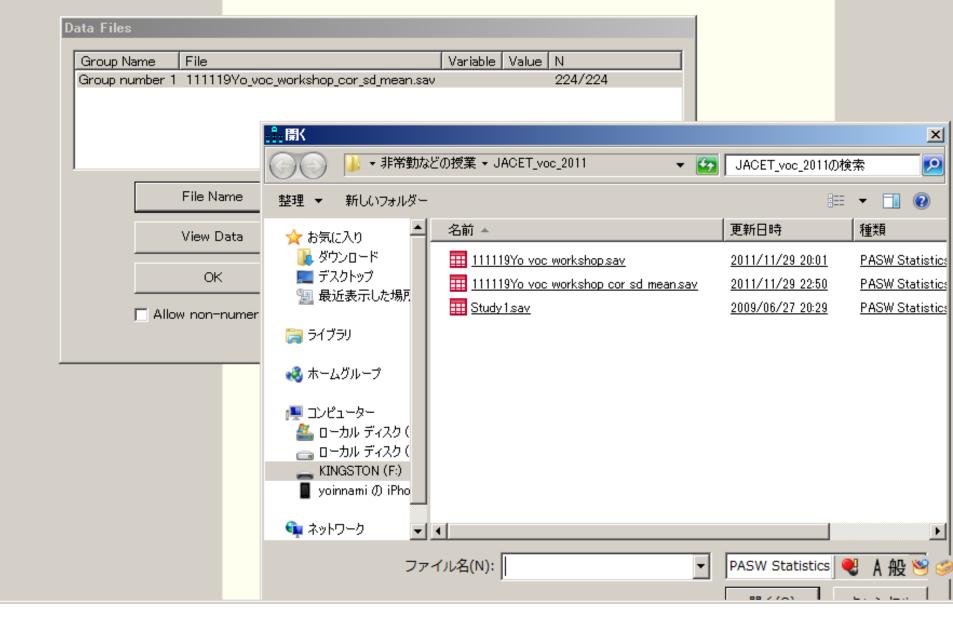

FMIN

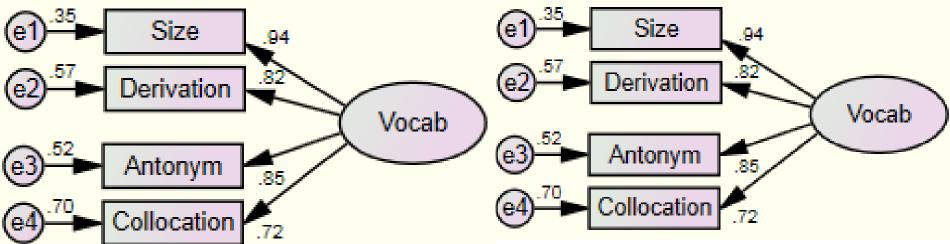
Model	FMIN	F0	LO 90	HI 90
Default model	.017	.008	.000	.052
Saturated model	.000	.000	.000	.000
Independence model	2.631	2.604	2.264	2.978

RMSEA

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.064	.000	.161	.299
Independence model	.659	.614	.704	.000

	X ² (CMIN)	df	р	CFI	TLI	RMSEA (90% CI)	$p_{ m close}$ fit H0	SRMR
Our Model	3.846	2	.146	.997	0.990	0.064 (0.000, 0.161)	.299	.014
Criteria			nonsig	hypothe	Near 1.00 sts the nu esis that th RMSEA	ne)	.05	=< .08
				greate	r than .05			23


How to calculate SRMR


• Run the model with the SRMR box left open and blank.

588 H	lodel 12	2 : G	iroup n	umber 1 : C)K: Def	iault mo	del				
File	Edit	View	Diagra	am Analyze	Tools	Plugins	Help				
-		•	Ъi	Group number 1	- and the second						
Titk											
վա	յ (Պ	η	ന്ന	Stand	ardized	RMR					×
-											
) 💀	ê	X							<u> </u>	
-	• C)	*	OK: De							
Ç	با	1	C								
5								- 1			
	- ⁶	5	*	Unstar Standa			Close	:			
-	-		\sim								

🚹 111119Yo_	voc_workshop	_cor_sd_mean.s	av [データセット]	1] – PASW Sta	atistics データ	エディタ	
ファイル(E)	編集(E) 表示	₹ <mark>(V)</mark> データ(<u>D</u>)	変換 (T) 分标	所 <mark>(A</mark>) グラフ <mark>(</mark> の	3) ユーティレ	/ティ <mark>(U)</mark> ウィ	ィンドウ(<u>W)</u>
			1		#1		
	rowtype_	varname_	Size	Derivati	Antonym	Collocat	var
1	n		224.000	224.000	224.000	224.000	
2	corr	Size	1.000				
3	corr	Derivati	.771	1.000			
4	corr	Antonym	. <mark>804</mark>	.684	1.000		
5	corr	Collocat	. <mark>6</mark> 59	. <mark>630</mark>	.614	1.000	
6	stddev		10.207	3.667	2.920	2.845	
7	mean		29.214	7.915	6.723	10.625	
8							
	i						

SEM results are (generally) reproducible even without the raw data, given access to (1) correlations & *SD*s [+means]) or (2) variances/covariances. This suggests that we can <u>reproduce previous studies</u> to see if the model was correctly analyzed and/or examine alternative models not tested in the primary study (see In'nami & Koizumi, 2010, for further details).

CMIN

Model	NPAR	CMIN	DF	Р	CMIN/DF
Default model	8	3.846	2	.146	1.923
Saturated model	10	.000	0		
Independence model	4	586.794	6	.000	97.799

RMR, GFI

Model	RMR	GFI	AGFI	PGFI
Default model	.193	.992	.958	.198
Saturated model	.000	1.000		
Independence model	13.709	.407	.011	.244

Baseline Comparisons

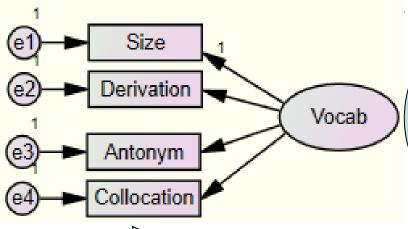
Model	NFI Delta1	RFI rhol	IFI Delta2	TLI rho2	CFI
Default model	.993	.980	.997	.990	.997
Saturated model	1.000		1.000		1.000
Independence model	.000	.000	.000	.000	.000

Left; raw data input. Right; *r*, *M*, *SD* input Model Fit Summary

CMIN

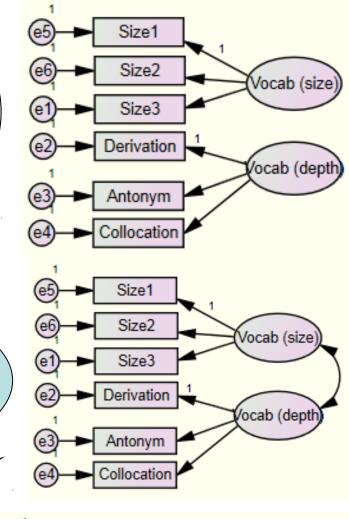
Model	NPAR	CMIN	DF	Р	CMIN/DF
Default model	8	3 902	2	.142	1.951
Saturated model	10	.000	0		
Independence model	4	586.777	6	.000	97.796

RMR, GFI

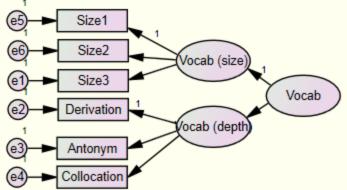

Model	RMR	GFI	AGFI	PGFI
Default model	.194	.991	.957	.198
Saturated model	.000	1.000		
Independence model	13.708	.407	.011	.244

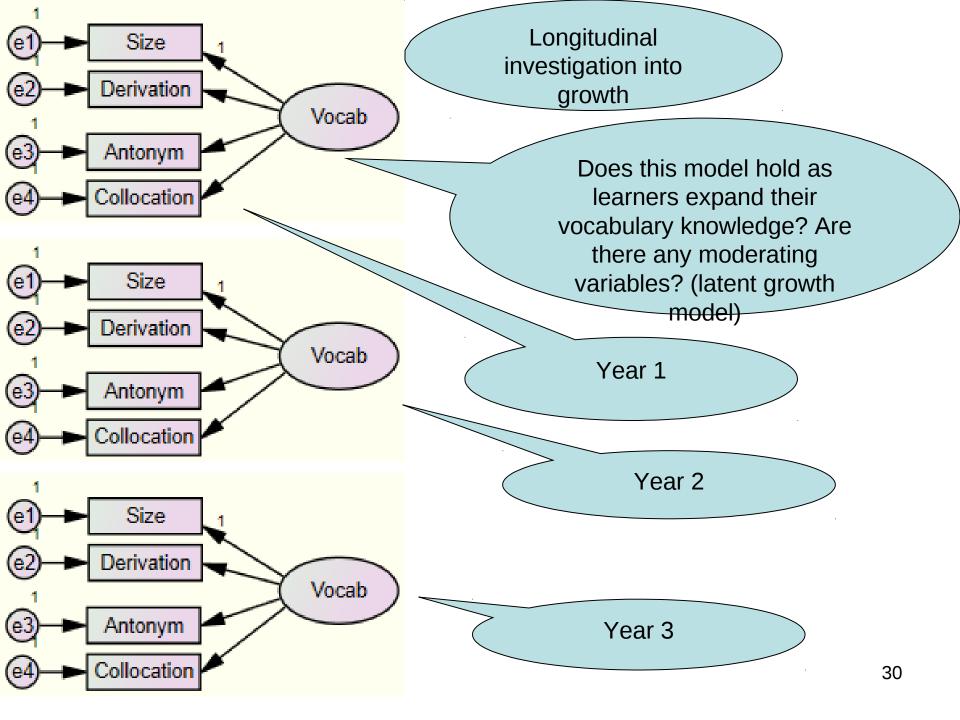
Baseline Comparisons

Model	NFI Delta1	RFI rho1	IFI Delta2	TLI rho2	CFI
Default model	.993	.980	.997	.990	.997
Saturated model	1.000		1.000	_	1.000
Independence model	.000	.000	.000	.000	.000

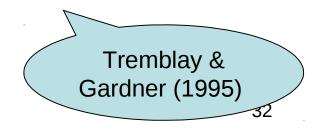

Overview

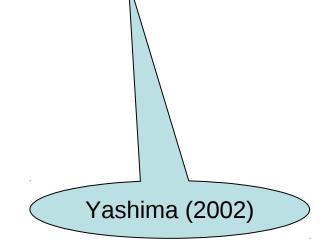
- SEM basics
- SEM demo
- <u>Applications</u>

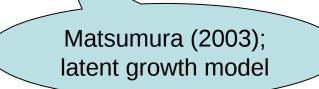


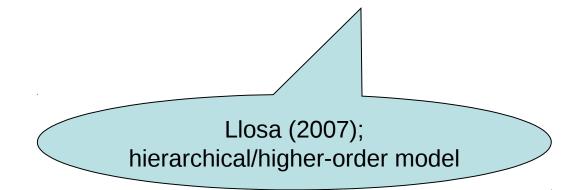

Crosssectional investigation into growth

Is there a high correlation between size and depth (Is vocabulary knowledge a unitary construct)? Is the structure different across learners of different proficiency (novice, intermediate, advanced)? (multi-sample model)




Does the strength of association between size and depth vary such that a model of separate size and depth is more appropriate? (hierarchical/higher-order model)





• The tables were displayed at the workshop.

In'nami & Koizumi, 2011

• The table was displayed at the workshop.

Software

	GUI		Fast & dependable technical support		Nonnormal data
Amos	х			х	(x)
EQS	×	XX	xxx	×	х
LISREL	х		x	х	х
Mplus		X	xxx	X	х

• GUI = graphic user interface.

SEMNET

http://www2.gsu.edu/~mkteer/semnet.html

References

- Bentler, P. M. (2005). *EQS 6 structural equations program manual.* Encino, CA: Multivariate Software.
- Bollen, K. A., & Long, J. S. (1993). Introduction. In K. A. Bollen & J. S. Long (Eds.), *Testing structural equation models* (pp. 1–9). Newbury Park, CA: Sage.
- Brown, T. A. (2006). *Confirmatory factor analysis for applied research.* New York: Guilford.
- Byrne, B. M. (2010). *Structural equation modeling with AMOS: Basic concepts, applications, and programming* (2nd ed.). Mahwah, NJ: Erlbaum.
- Byrne, B. M. (2006). *Structural equation modeling with EQS: Basic concepts, applications, and programming* (2nd ed.). Mahwah, NJ: Erlbaum.
- Byrne, B. M. (2011). *Structural equation modeling with Mplus: Basic concepts, applications, and programming.* Mahwah, NJ: Erlbaum.
- Field, A. (2005). *Discovering statistics using SPSS* (2nd ed.). London: Sage.
- In'nami, Y., & Koizumi, R. (2010). Can structural equation models in second language testing and learning research be successfully replicated? *International Journal of Testing*, *10*, 262–273.
- In'nami, Y., & Koizumi, R. (2011). Structural equation modeling in language testing and learning research: A review. *Language Assessment Quarterly, 8,* 250–276.

References

- Kline, R. B. (2011). *Principles and practice of structural equation modeling* (3rd ed.). New York: Guilford.
- Koizumi, R., & In'nami, Y. (in preparation).
- Llosa, L. (2007). Validating a standards-based classroom assessment of English proficiency: A multitrait-multimethod approach. *Language Testing*, *24*, 489–515.
- Matsumura, S. (2003). Modelling the relationships among interlanguage pragmatic development, L2 proficiency, and exposure to L2. *Applied Linguistics, 24,* 465–491.
- Mizumoto, A., & Takeuchi, O. (in press). Adaptation and validation of self-regulating capacity in vocabulary learning scale. *Applied Linguistics.*
- Shiotsu, T., & Weir, C. J. (2007). The relative significance of syntactic knowledge and vocabulary breadth in the prediction of reading comprehension test performance. *Language Testing*, *24*, 99–128.
- Tremblay, P. F., & Gardner, R. C. (1995). Expanding the motivation construct in language learning. *Modern Language Journal, 79,* 505–518.
- Tseng, W.-T., Dornyei, Z., & Schmitt, N. (2006). A new approach to assessing strategic learning: The case of self-regulation in vocabulary acquisition. *Applied Linguistics, 27,* 78–102.
- Tseng, W.-T., & Schmitt, N. (2008). Toward a model of motivated vocabulary learning: A structural equation modeling approach. *Language Learning*, 58, 357–400.
- Yashima, T. (2002). Willingness to communicate in a second language: The Japanese EFL context. *Modern Language Journal, 86,* 54–66.